skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kavaki, Hassan Salami"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Human listeners use specific cues to recognize speech and recent experiments have shown that certain time-frequency regions of individual utterances are more important to their correct identification than others. A model that could identify such cues or regions from clean speech would facilitate speech recognition and speech enhancement by focusing on those important regions. Thus, in this paper we present a model that can predict the regions of individual utterances that are important to an automatic speech recognition (ASR) “listener” by learning to add as much noise as possible to these utterances while still permitting the ASR to correctly identify them. This work utilizes a continuous speech recognizer to recognize multi-word utterances and builds upon our previous work that performed the same process for an isolated word recognizer. Our experimental results indicate that our model can apply noise to obscure 90.5% of the spectrogram while leaving recognition performance nearly unchanged. 
    more » « less